US009424070B2

a2 United States Patent

Hutton et al.

US 9,424,070 B2
Aug. 23, 2016

(10) Patent No.:
45) Date of Patent:

(54) COMBINING SCALABILITY ACROSS
MULTIPLE RESOURCES IN A
TRANSACTION PROCESSING SYSTEM
HAVING GLOBAL SERIALIZABILITY

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

(71) Applicant: Open Cloud NZ Ltd, Wellington (NZ) U.S. PATENT DOCUMENTS
(72) Inventors: Matthew Bennet Hutton, Wellington
(NZ); Oliver Tostig Benjamin Jowett, 7,509,370 Bl 3/2009 Branda et al.
Cambridge (GB): David Ian Ferry, 2005/0097555 Al 5/2005 Tuel
Cambridge (GB) (Continued)
(73) Assignee: OPEN CLOUD LIMITED, Cambridge OTHER PUBLICATIONS
(GB) Search Report for corresponding GB Application No. 1212756.9,
(*) Notice: Subject to any disclaimer, the term of this dated Nov. 15, 2012, 3 pgs. _ o _
patent is extended or adjusted under 35 Internatlolr_lal _Search Repo;t and Wr/ltten Oplg;ondfor corresponding
U.S.C. 154(b) by 0 days. II)’;ZST)App ication No. PCT/GB2013/051581, dated Oct. 11,2013 (10
(21) Appl. No.: 14/410,892 (Continued)
(22) PCT Filed: Jun. 18, 2013
Primary Examiner — Craig Dorais
(86) PCT No.: PCT/GB2013/051581 (74) A;;orney, Agent, or Ffl'%rm — Shumaker & Sieffert, PA.
371 (c)(1 57 ABSTRACT
§ 371 (e)(D),
(2) Date: Dec. 23, 2014 There is disclosed a method and system for processing
(87) PCT Pub. No.: WO2014/013220 transactions requested by an applicatipn in a distributed
computer system. The computer system includes at least one
PCT Pub. Date: Jan. 23, 2014 resource comprising a plurality of storage areas each with an
(65) Prior Publication Data assocw.lte.:d resource manager, or a plurahty.of resources .each
comprising at least one storage area with an associated
US 2015/0193264 Al Tul. 9, 2015 resource manager, the storage areas holding the same tables
as each other. There 1s also provided a transaction manager
h other. There is also provided i g
that is linked, by way of either a network or a local
Related U.S. Application Data application programming interface (API), to each of the
(60) Provisional application No. 61/673,135, filed on Jul. FeSOUTCE MANAgers, the transaction manager belng config-
18. 2012 ured to coordinate transaction prepare and commit cycles.
> : The application requests operations on the resource by way
(30) Foreign Application Priority Data of an interface; and a dispatch function directs transactions
from the application to the appropriate storage areas on the
Jul. 18,2012 (GB) oo 1212756.9 basis of the content of the tables in the resource managers,
in such a way that any given transaction is routed only to the
(1) Int. Cl. storage areas containing entries upon which the transaction
GOGF 3/00 (2006.01) operates, allowing another transaction operating on different
GOGF 9/44 (2006.01) entries to be routed concurrently in parallel to other storage
(Continued) areas. A safe timestamp manager is provided to allocate new
timestamps for committing transactions when such transac-
(52) US.ClL tions access more than one resource storage area at the same
CPC ..o GO6F 9/466 (2013.01); GOGF 9/54 time.
(2013.01) 48 Claims, 13 Drawing Sheets
(Resource \
: Storage :
] Disp-\—~ Areg TR \
I atch
Application
PP datient function / .
ARk Storage |, /
Area

[

Q\\.

/

i

US 9,424,070 B2
Page 2

(51) Imt.CL
GO6F 9/46 (2006.01)
GO6F 13/00 (2006.01)
GO6F 9/54 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

2006/0015485 Al*

2009/0287703 Al

2012/0102006 Al 4/2012 Larson et al.

2012/0167098 Al 6/2012 Lee et al.

2014/0330767 Al* 11/2014 Fowler ... GO6F 9/466
707/607

1/2006 Hofmann GOGF 17/30575
11/2009 Furuya

OTHER PUBLICATIONS

Sebastiano Peluso et al., “When Scalability Meets Consistency:
Genuine Multiversion Update-Serializable Partial Data Replica-
tion,” Jun. 18, 2012, Distributed Computing Systems, 2012 IEEE
32nd International Conference on, pp. 455-465, XP032217888.
Jason Baker et al., “Megastore: Providing Scalable, Highly Avail-
able Store for Interactive Services,” Jan. 12, 2011, Internet: URL:
http://pdos.csail .mit.edu/6.824-212/papers/jbaker-megastore.pdf.
XP002713904.

Hany E. Ramadan et al., “Dependence-Aware Transactional
Memory for Increased Concurrency,” Nov. 8, 2008,
Microarchitecture, Micro-41, 2008 41st IEEE/ACM International
Symposium on, IEEE, Piscataway, NJ, pp. 246-257, XP031442411.

* cited by examiner

US 9,424,070 B2

Sheet 1 of 13

Aug. 23, 2016

U.S. Patent

P Ly L)

%,

2
%,
A

FIGURE 1

U.S. Patent Aug. 23,2016 Sheet 2 of 13 US 9,424,070 B2

/ Resource

FIGURE 2

U.S. Patent Aug. 23,2016 Sheet 3 of 13 US 9,424,070 B2

DBTimeStamp =8

FIGURE 3

US 9,424,070 B2

Sheet 4 of 13

Aug. 23, 2016

U.S. Patent

uxj-jsod sie1s

£
i

¥ 34Noid

g = dwejgewi i gq.

uxj-aid aye1s

-

US 9,424,070 B2

Sheet 5 of 13

Aug. 23, 2016

U.S. Patent

. p=dweigewiiga

. o
R A A A A BRI HEAR

¢ =dwegewi]gq |

;;;;;;;;;; .

3

w%

uonoesueld-isod a1e1g

uonoesuedi-aid 9115

g 3dN9OI4

Z JBAIBG

L JoAleg

US 9,424,070 B2

Sheet 6 of 13

Aug. 23, 2016

U.S. Patent

yoledsic]
201N0Soy

934dN9l4

US 9,424,070 B2

Sheet 7 of 13

Aug. 23, 2016

U.S. Patent

labeuep
dwejsawi] ajes

/

o

ealy
abeliolg

uolouny

BaIY
obeiolg

yoledsig

80IN0SaY

2 34NoOId

uoneoiddy

SR

U.S. Patent

Resource

Aug. 23, 2016

Sheet 8 of 13

function

US 9,424,070 B2

FIGURE 8

Sheet 9 of 13

Aug. 23, 2016

U.S. Patent

ealy
-| abeloig

99IN0SaY

Baly
abelo1g

92JN0S8Y

6 34NOI

uoiouny
yoyedsiq

uonedady

U.S. Patent Aug. 23,2016 Sheet 10 of 13 US 9,424,070 B2

/"

g
&

Resource

> 11 0

PO

FIGURE 10

US 9,424,070 B2

Sheet 11 of 13

Aug. 23, 2016

U.S. Patent

L 34NOId

suoinjessusab pue saiug

e
\ loBeuepy dwejsowi | 8jes

S9)E)S JIWLIOD g;g@%ﬁ

US 9,424,070 B2

Sheet 12 of 13

Aug. 23, 2016

U.S. Patent

a|dwex3
PIO0SY
uonoesuel |

OZHSINIG = 91818 HULOD.
2 = PORHULIOD JSGUINN.

& v =sesie 2bei0is.

&= diumsel .

Sl = (JUOHOBSUEL L.

JeLIO
PJOOSY
uonoesuel |

¢l 34NOld

S1BIS JILUOD.

paRILWoD sease abBiols JO ISQUINN.
pesnsesie afeiois o8

uoiioBsuel Buniuiwos sup sgy dweissiu .
UOHOBSUBI] SU JO] (IUOIIOESUBI [«

Jsbeuely dweisaull] ajeg

US 9,424,070 B2

Sheet 13 of 13

Aug. 23, 2016

U.S. Patent

€l 34NoOlId

CZHSINIG = 81818 IOy
2= POLILUWOS taguUnis
'y =seaie alivioig.

om diessul s

21 = (J{UORoBSUBI] .

Oh

IONSd = 31BI5 JWLLO e
= OGS JSGUINK
a'y = sesie afivioig.
o= duwesaulls

71 = CHUSOBSUBE .

(O3HSINIG = 318]S Jo).
= POIHUILGD IS0,
o= seaie olrlolg.
oo=idwsisew s

A EQuoRoesUR L.

OIHSINIG = 31E1S LoD
7 = POTUIIGT JBgUInK.

O = sEaiE 80RI0IC.

Loz dwmissui s

X{ =rhuoiossusit,

Jebeuey dweissill| ajes

US 9,424,070 B2

1
COMBINING SCALABILITY ACROSS
MULTIPLE RESOURCES IN A
TRANSACTION PROCESSING SYSTEM
HAVING GLOBAL SERIALIZABILITY

This application is a national stage entry under 35 U.S.C.
§371 of PCT Application No. PCT/GB2013/051581, filed
Jun. 18, 2013, which claims the benefit of Great Britain
Application No. 1212756.9, filed Jul. 18, 2012 and U.S.
Application No. 61/673,135, filed Jul. 18, 2012. The entire
contents of each of PCT Application No. PCT/GB2013/
051581, Great Britain Application No. 1212756.9 and U.S.
Application No. 61/673,135 are incorporated herein by
reference.

This invention relates to a method and system for pro-
cessing transactions in a distributed computer system that
conforms to global serializability, and which makes use of
scalability across multiple resources.

BACKGROUND

A distributed database is a database in which storage
devices are not all attached to a common CPU. It may be
stored in multiple computers located in the same physical
location, or may be dispersed over a network of intercon-
nected computers.

Collections of data (e.g. in a database) can be distributed
across multiple physical locations. A distributed database
can reside on network servers on the Internet, on corporate
intranets or extranets, or on other company networks. The
replication and distribution of databases improves database
performance at end-user worksites.

To ensure that the distributive databases are up to date and
current, there are two processes: replication and duplication.
Replication involves using specialized software that looks
for changes in the distributive database. Once the changes
have been identified, the replication process makes all the
databases look the same. The replication process can be very
complex and time consuming depending on the size and
number of the distributive databases. This process can also
require a lot of time and computer resources. Duplication on
the other hand is not as complicated. It basically identifies
one database as a master and then duplicates that database.
The duplication process is normally done at a set time after
hours. This is to ensure that each distributed location has the
same data. In the duplication process, changes to the master
database only are allowed. This is to ensure that local data
will not be overwritten. Both of the processes can keep the
data current in all distributive locations.

Besides distributed database replication and fragmenta-
tion, there are many other distributed database design tech-
nologies. For example, local autonomy, synchronous and
asynchronous distributed database technologies. The imple-
mentation of these technologies can and does depend on the
needs of the business and the sensitivity/confidentiality of
the data to be stored in the database, and hence the price the
business is willing to spend on ensuring data security,
consistency and integrity.

Multi-version concurrency control (MCC or MVCC), in
the database field of computer science, is a concurrency
control method commonly used by database management
systems to provide concurrent access to the database and in
programming languages to implement transactional
memory.

For instance, a database will implement updates not by
deleting an old piece of data and overwriting it with a new
one, but instead by marking the old data as obsolete and

10

15

20

25

30

35

40

45

50

55

60

65

2

adding the newer version. Thus there are multiple versions
stored, but only one is the latest. This allows the database to
avoid overhead of filling in holes in memory or disk struc-
tures but requires (generally) the system to periodically
sweep through and delete the old, obsolete data objects. For
a document-oriented database it also allows the system to
optimize documents by writing entire documents onto con-
tiguous sections of disk—when updated, the entire docu-
ment can be re-written rather than bits and pieces cut out or
maintained in a linked, non-contiguous database structure.

MVCC also provides potential point in time consistent
views. In fact, read transactions under MVCC typically use
a timestamp or transaction ID to determine what state of the
DB to read, and read these versions of the data. This avoids
managing locks for read transactions because writes can be
isolated by virtue of the old versions being maintained,
rather than through a process of locks or mutexes. Writes
affect future version but at the transaction ID that the read is
working at, everything is guaranteed to be consistent
because the writes are occurring at a later transaction ID.

In other words, MVCC provides each user connected to
the database with a snapshot of the database for that person
to work with. Any changes made will not be seen by other
users of the database until the transaction has been commit-
ted.

FIG. 1 shows a known system in which transactions or
changes to entries in the Resources resulting from operations
of the Application, are controlled by a Transaction Manager
(TM) or Transaction Co-ordinator and multiple Resource
Managers (RMs). The TM co-ordinates multiple RMs into a
single “global” transaction. The Application communicates
with each Resource and also with the TM. This may be by
way of APIs, and/or a query language, and/or a protocol. For
present purposes, we shall refer to the interface between the
Application and the Resources (and the TM) simply as an
interface, although it will be understood that the term
interface encompasses one or more of APIs, and/or a query
language, and/or a protocol. The Application may be con-
sidered as a program that uses and manipulates the entries in
the Resources.

Another way of looking at a known database system is
shown in FIG. 2. A Resource in this context is a system or
component that participates in a transaction processing
system. A database may be considered as a typical Resource.
The Resource in FIG. 2 may, at its simplest, be considered
as a storage area that is managed by an RM. The RM is
simply an interface exposed by a transacted Resource to the
TM. The RM allows the TM to coordinate transaction
boundaries across multiple Resources. Multiple RMs may
be present in a single Resource. The RM may perform
operations such as prepare(), commit() and rollback().
These operations are invoked by the TM. The TM invokes
the RMs, and is only concerned with managing the prepare/
commit/rollback lifecycles for the various RMs used in its
transactions. An Application can access the Resource by
way of APIs, and/or a query language, and/or a protocol that
interfaces between the Application and the Resource, and
which allows the Application to ask the Resource to do
something. Operations are resource-specific, some examples
include Structured Query Language (SQL) queries, or key/
value API operations such as findByPrimaryKey(Key),
update(key,value), remove(key), create(key,value) and so
forth.

The industry has implemented a two-phase commit (2PC)
protocol, and various standards (e.g. CORBA Object Trans-
action Service (OTS), Java® Transaction API etc.) have
been put in place in relation to the 2PC protocol. In

US 9,424,070 B2

3

transaction processing, databases, and computer network-
ing, the two-phase commit protocol (2PC) is a type of
atomic commitment protocol (ACP). It is a distributed
algorithm that coordinates all the processes that participate
in a distributed atomic transaction on whether to commit or
abort (roll back) the transaction (it is a specialized type of
consensus protocol). The protocol achieves its goal even in
many cases of temporary system failure (involving either
process, network node, communication, etc. failures), and is
thus widely utilized. However, it is not resilient to all
possible failure configurations, and in rare cases user (e.g.,
a system’s administrator) intervention is needed to remedy
outcome. To accommodate recovery from failure (automatic
in most cases) the protocol’s participants use logging of the
protocol’s states. Log records, which are typically slow to
generate but survive failures, are used by the protocol’s
recovery procedures. Many protocol variants exist that pri-
marily differ in logging strategies and recovery mechanisms.
Though usually intended to be used infrequently, recovery
procedures comprise a substantial portion of the protocol,
due to many possible failure scenarios to be considered and
supported by the protocol.

In a “normal execution” of any single distributed trans-
action, i.e., when no failure occurs, which is typically the
most frequent situation, the protocol comprises two phases:

i) The commit-request phase (or voting phase), in which
a coordinator process attempts to prepare all the transac-
tion’s participating processes (named participants, cohorts,
or workers) to take the necessary steps for either committing
or aborting the transaction and to vote, either “Yes”: commit
(if the transaction participant’s local portion execution has
ended properly), or “No™: abort (if a problem has been
detected with the local portion), and

i1) The commit phase, in which, based on voting of the
cohorts, the coordinator decides whether to commit (only if
all have voted “Yes™) or abort the transaction (otherwise),
and notifies the result to all the cohorts. The cohorts then
follow with the needed actions (commit or abort) with their
local transactional resources (also called recoverable
resources; e.g., database data) and their respective portions
in the transaction’s other output (if applicable).

Referring now to FIG. 3, in a known MVCC environment,
an algorithm is used for implementing multiple isolation
levels, including the strictest isolation. This means that the
system is serializable.

Multiple versions of each database entry are stored, each
with an associated version number or timestamp. The ver-
sion number or timestamp is allocated by the database or the
Resource handling the transaction. In the example shown in
FIG. 3, the version number is shown as “DBTimeStamp=8”.
Version numbers or timestamps are typically a monotoni-
cally increasing sequence.

In FIG. 3, which shows a simple database with three
entries A, B and C, it can be seen that entry A has versions
1, 2 and 3; entry B has versions 4, 5 and 8; and entry C has
versions 6 and 7. Transactions observe a consistent snapshot
of the contents of the database by storing the DBTimeStamp
at the point of first access to the database or RM. For
example, a transaction that started when DBTimeStamp had
a value of 3 would only be able to see entry A version 3; a
transaction that started when DBTimeStamp had a value of
5 would only be able to see entry A version 3 and entry B
version 5; and a transaction that started when DBTimeStamp
had a value of 7 would only be able to see entry A version
3, entry B version 5 and entry C version 7.

In other words, each entry in the database, and each
change to an entry (e.g. creation, updates, removal etc.) is

25

30

40

45

55

65

4

stored in the database along with a version number or
timestamp. A transaction can only “see” the appropriate
values in the database that are valid for that particular
transaction. A transaction therefore has associated meta-data
(a first-read timestamp) that is initialised when the transac-
tion first reads/writes from/to the RM. The database only lets
a transaction observe entries that have timestamps less than
or equal to the timestamp of the transaction. This effectively
confines the transaction to entries that have been made or
changed prior to the timestamp of the transaction. Each time
a given transaction commits, the current “global” timestamp
of the RMs is moved forward, so that new transactions
(started later) will see the modifications that the given
transaction has made. In order to move the global timestamp
forward, concurrent transactions have to use mutual exclu-
sion to update the global timestamp.

Referring now to FIG. 4, a new transaction begins and is
assigned a visibility of DBTimeStamp=S8. In this example,
the new transaction will update entry C, and commit. The
transaction commits as follows, with operations 1), 2) and 3)
being performed as a single action (i.e. the operations are not
interleaved across concurrent transactions):

1) read DBTimeStamp with value 8

2) insert the new update creating C with version 8+1==9

3) update DBTimeStamp to value 9

In a local-only system it is possible to use locking to
ensure correct ordering/non-interleaving. In a distributed
system such as a multi-server cluster, in order to make
database changes available across servers, it is usual to use
an ordering to apply the changes to other nodes. In other
words, all nodes apply the same changes, in the same order,
using a deterministic algorithm. This means that, given the
same starting state and the same changes being applied (in
the same order), then each node will reach the same state. A
total ordering of commit messages is used to ensure that the
operations are not interleaved. Total ordering means that
every server/node processes the same operations in the same
order. The operations must be non-interleaved, otherwise the
RM/DB or Client will result in incorrect data or states. This
ordering enforces a one-after-the-other application of
changes, which means that it is not possible to make use of
parallelism, as it would not have any benefit.

Distribution is a key requirement for systems with avail-
ability and performance that is greater than the availability
and performance of a single server. In addition, it is desirable
to have a system where there are multiple active nodes so as
to ensure high availability as well as scalability greater than
the capacity of any single server. It is also desirable to reduce
the general network chatter between nodes, and to prevent
chatter from taking place mid-transaction. Accordingly, net-
work messages are passed at the end of a transaction as part
of the commit protocol.

Moreover, all nodes apply the same whole-commit in the
same order (i.e. Total Ordering of Commits—TOC). This
ensures that the commit operations are non-interleaved
across different transactions. The application of a commit
uses a deterministic algorithm, hence all nodes reach the
same state.

The benefits of this known implementation are that it
provides a scalable and highly available system architecture,
it is active/active over N nodes, and communication takes
place only at the end of a transaction, thereby reducing
latency. There is, however, a significant drawback, in that a
scalability bottleneck is created around commit ordering
(since all commits must be executed serially).

If a certain isolation level (e.g. read-committed, or repeat-
able-read, or serializable, and so forth) is needed, then it is

US 9,424,070 B2

5

necessary to have a Resource that provides such isolation.
Moreover, if multiple Resources are involved in a transac-
tion, then there is a problem that the overall isolation will be
less than the isolation of a single Resource. This is because
different Resources can release internal resources (such as
locks) when they commit, and the Resources commit at
different times. As a result, Applications can observe
changes in one Resource before they can observe changes in
another Resource, leading to data corruption. This is not a
particularly problematic issue if Applications or Resources
always use a form of pessimistic concurrency control, but if
some parts of the system use optimistic concurrency control
and other parts use pessimistic concurrency control, then
guarantees are lost if the entries are spread across multiple
Resources.

Referring now to FIG. 5, this shows a simple system with
two nodes (Server 1 and Server 2), each in the same state.
Each node applies the same transactions in the same order,
resulting in the same state after the transactions. In the
illustrated example, the transaction is an update to entry B.
In simple terms, in a distributed system where any member
of a group can multicast a transaction message to any other
member, certain problems can arise. One of the most sig-
nificant is that messages can be interleaved. For example, if
process X sends message 1 and process Y sends message 2,
it is possible that some group members receive message 1
first, and others receive message 2 first. If both messages
update the value of some shared data structure, then it is
possible that different members will have different values for
the data structure after the transaction. TOC helps to prevent
this situation by forcing all messages or transactions to be
accepted and processed in some fixed order. Timestamps are
one way of doing this, and these allows receivers getting an
out-of-sequence message to recognise it as such, and to hold
the message until the preceding message has been received.

There is a useful and detailed discussion of distributed
multi-version commitment ordering protocols for guaran-
teeing serializability during transaction processing in U.S.
Pat. No. 5,701,480, the full contents of which are hereby
incorporated into the present application by way of refer-
ence.

U.S. Pat. No. 5,701,480 explains in detail how it is
possible to define a single global serializability across mul-
tiple Resources in multi-value databases.

It is well known that global serializability is not guaran-
teed merely by ensuring that each processor or process
achieves local serializability, because local transactions may
introduce indirect conflicts between distributed global trans-
actions. It is impractical to permit a processor or process to
view a global picture of all the conflicts in all of the other
processors or processes. Without a global picture, however,
it is difficult for a processor or process to ensure that there
is a correlation between its serializability order and the
serializability orders of the other processors or processes.
Time-stamping of transaction requests and data updates is
one method that has been used to address this problem of
concurrency control. In general, concurrency control in a
distributed computing system has been achieved at the
expense of restricted autonomy of the local processors or
processes, or by locking.

Global serializability can be guaranteed in a distributed
transaction processing system by enforcing a “commitment
ordering” for all transactions. U.S. Pat. No. 5,504,900 shows
that if global atomicity of transactions is achieved via an
atomic commitment protocol, then a “commitment order-
ing” property of transaction histories is a sufficient condition
for global serializability. The “commitment ordering” prop-

10

15

20

25

30

35

40

45

50

55

60

65

6

erty occurs when the order of commitment is the same as the
order of performance of conflicting component operations of
transactions. Moreover, it is shown that if all of the local
processes are “autonomous,” i.e. they do not share any
concurrency control information beyond atomic commit-
ment messages, then “commitment ordering” is also a nec-
essary condition for global serializability.

However, neither U.S. Pat. No. 5,701,480 nor U.S. Pat.
No. 5,504,900 addresses the issue of scalability. Scalability
is the ability of a system, network, or process to handle a
growing amount of work in a capable manner or its ability
to be enlarged to accommodate that growth. For example, it
can refer to the capability of a system to increase total
throughput under an increased load when resources (typi-
cally hardware) are added.

Scalability is a highly significant issue in databases and
networking. A system whose performance improves after
adding hardware, proportionally to the capacity added, is
said to be a scalable system.

An algorithm, design, networking protocol, program, or
other system is said to scale, if it is suitably efficient and
practical when applied to large situations (e.g. a large input
data set, a large number of outputs or users, or a large
number of participating nodes in the case of a distributed
system). If the design or system fails when a quantity
increases, it does not scale.

BRIEF SUMMARY OF THE DISCLOSURE

Viewed from a first aspect, there is provided a method of
processing transactions requested by an application in a
distributed computer system comprising:

at least one resource comprising a plurality of storage
areas each with an associated resource manager, the storage
areas holding the same tables as each other;

or a plurality of resources each comprising at least one
storage area with an associated resource manager, the stor-
age areas holding the same tables as each other;

a transaction manager that is linked, by way of a network
or a local application programming interface (API), to each
of the resource managers, the transaction manager being
configured to coordinate transaction prepare and commit
cycles;

wherein the application requests operations on the
resources by way of an interface;

wherein a dispatch function directs transactions from the
application to the appropriate storage area or storage areas
on the basis of the content of the tables in the storage areas,
in such a way that any given transaction is routed only to the
storage areas containing entries upon which the transaction
operates, allowing another transaction operating on different
entries to be routed concurrently in parallel to other storage
areas; and

wherein a safe timestamp manager is provided to allocate
new timestamps for committing transactions in a single
order.

Viewed from another aspect, there is provided a distrib-
uted computer system comprising:

at least one resource comprising a plurality of storage
areas each with an associated resource manager, the storage
areas holding the same tables as each other;

or a plurality of resources each comprising at least one
storage area with an associated resource manager, the stor-
age areas holding the same tables as each other;

a transaction manager that is linked, by way of a network
or a local application programming interface (API), to each

US 9,424,070 B2

7

of the resource managers, the transaction manager being
configured to coordinate transaction prepare and commit
cycles;

an interface to allow an application to request operations
on the resources;

a dispatch function to direct transactions from the appli-
cation to the appropriate storage area or storage areas on the
basis of the content of the tables in the storage areas, in such
a way that any given transaction is routed only to the storage
areas containing entries upon which the transaction operates,
allowing another transaction operating on different entries to
be routed concurrently in parallel to other storage areas; and

a safe timestamp manager is to allocate new timestamps
for committing transactions in a single order.

Although the storage areas hold the same tables, the tables
may be populated with different entries. In other words, each
storage area may have different entries in its table from the
other storage areas.

The resource manager may be considered to be simply an
interface between a storage area and the transaction man-
ager. The storage areas within the resources hold the tables.
Each storage area has an associated resource manager. If a
resource has only one storage area, then scalability is
achieved by dispatching across multiple resources. For
resources with multiple storage areas, scalability can be
achieved by dispatching in parallel across the multiple
storage areas.

Viewed in another way, the resource manager is the part
of the resource that communicates with the transaction
manager (for example, according to an Object Transaction
Service, and under Java Transaction API).

Applications may talk to databases using a query lan-
guage (e.g. SQL). Applications may talk to “noSQL” data-
bases using a query language, or an API. Applications may
talk to “transactional memory” using an API. Applications
may be co-resident with the “database” or “transactional
memory” (and therefore are using an API), or if applications
are “external” to the “database” and so use a protocol.

Accordingly, the interface by which the application com-
municates with or requests operations on the resource may
take the form of a client API, and/or a query language,
and/or a protocol or any other suitable form.

If a transaction operates on or required more than one
resource, then an external transaction manager is required. If
a resource has more than one storage area internally, then it
will the resource will need multiple resource managers, one
for each storage area.

In other words, there is provided one resource manager
for each storage area. A transaction manager is required, and
the transaction manager may or may not need to be an
external transaction manager (that is, external to the
resource).

Accordingly, a resource has one or more storage areas (for
internal dispatch or partitioning). A storage area has a
resource manager. An external transaction manager is only
needed if there is more than one resource used in a given
transaction.

If only one resource is used in a transaction, then (regard-
less of whether or not the resource uses more than one
internal storage area), an internal transaction manager can be
used. If there is only one resource, and there are multiple
storage areas, then embodiments of the present invention
will use 2PC, and so will require a transaction manager.

As such, depending on requirements, the transaction
manager may be internal to the resource or external to the
resource.

10

15

20

25

30

35

40

45

55

60

8

By providing a dispatch function to interface between the
application and the plurality of resources, the present inven-
tion allows the application to operate as if it is communi-
cating with only a single resource, with the dispatch function
directing transactions across appropriate resources, in some
cases in parallel, without the application needing to be aware
of the presence of multiple resources.

Moreover, the dispatch function may be part of the
resource, or it may be part of the application. Specifically,
the dispatch function is part of the resource if the resource
wants internally to divide its state (e.g. scalability). Alter-
natively, the dispatch function may be part of the application
if the application needs to access more than one resource
(e.g. resources that contain different types of data). The
dispatch function is responsible for intelligently distributing
requests to the appropriate storage areas (when part of the
resource) and for intelligently distributing requests to the
appropriate resource (when part of the application).

Dispatch can be considered as existing in any of three
places, potentially simultaneously:

i) Dispatch inside the application (this is then across
multiple resources, and is implicit in the application design)

i) Dispatch as a “proxy” between the application and the
various resources (in which case the application may not
need to be designed to get scalability advantages)

iii) Dispatch internally inside a resource; in this case, the
resource dispatches to its own storage areas

Any given resource has a scalability limit, and different
resources can have different scalability limits (due to dif-
ferent algorithms, internal software design limitations, hard-
ware limitations etc.). Using global serializability as a basis,
it is possible to implement an improved scalability. Global
serializability is a prerequisite for embodiments of the
present invention so as to ensure that application clients get
consistent results out of the distributed database, taking into
account locking modes and the like. A particular target is to
achieve a system with N resources having N times the
scalability of each resource, while still providing atomicity
and global serializability.

The dispatch function may implement an AP, or protocol,
that is used by the application. This may be the same API or
protocol that is used by the individual resources. The appli-
cation communicates with the transaction manager (TM)
and with the dispatch function. However, the application
does not necessarily realise that it is communicating with the
dispatch function per se, but instead thinks that it is com-
municating with any one of the resources directly.

Every resource holds the same tables (or key space). This
means that creating a table at the dispatch function level will
create an equivalent table in each resource.

The dispatch function steers operations or transactions
(for example, when a database row/object/entry is created,
updated or removed) across different resources. Any opera-
tion on a particular row/object/entry is given to the same
resource, i.e. one entry resides in one resource. This means
that a transaction using entries A and B, for example, may
use a different resource to a transaction using entry C. This
can be done by using a function to spread entries across the
resources. A simple function of this type, for example, would
find the resource to use for any given transaction by taking
the hash-code of the entry’s Primary Key (or some other
unique identifier including any index value that can be used
to retrieve the entry in question) modulo the number of
resources (N). This means that it is possible to run transac-
tion commits in parallel, as each resource has its own
commit mechanism. An important advantage obtained by
running these transactions in parallel is that they can be

US 9,424,070 B2

9

directed to use completely different resources from each
other, which means that the scalability can be improved.

The dispatch function and co-location in a particular
resource may be better understood by considering that in
many data models, there are entries that are related to each
other. The way in which the entries are related to each other
is application dependent. One simple example is a person
and his possessions. Most people have their own posses-
sions, for example car, wallet, keys, mobile phone. Indeed,
most people have independent sets of possessions. Some-
times some possessions may be shared (e.g. by the person’s
family), but more often than not, the sets of possessions are
independent of another random member of the human
population. In this example, “ownership” can be seen as a
useful mechanism for logically grouping otherwise indepen-
dent items (car, wallet, keys, mobile phone).

When expressing this as a data model, each item will have
a unique identifier or Primary Key. For example, there may
be two different wallets—the first is wallet #111111, and the
second is wallet #222222. Each item may have an attribute
that identifies its ownership, for example wallet #111111
owned by person #1 and wallet #222222 owned by person
#2. Likewise, the owner may have a set of possessions that
he owns.

If all of the items are simply “hash-spread” into different
resources (i.e. hashing each item’s Primary Key modulo the
number of resources), 2PC must be used for a large per-
centage of transactions, if transactions frequently include
more than one item.

Embodiments of the present invention can be configured
to avoid 2PC overheads. It is well-known that 2PC trans-
actions are more resource intensive than single-phase com-
mit transactions. The 2PC protocol requires extra commu-
nications between the TM and the RMs, which takes up
additional computer cycles.

If each entry is always hashed into a resource solely on the
basis of its identifier’s hash-code, then the entries are not
distributed in an optimum way, and it may become necessary
to use 2PC for any transaction that uses more than one entry.
This would harm the overall performance of the system.

It is therefore advantageous for related items to be co-
located in the same resource. Accordingly, related rows/
objects/entries are advantageously grouped in to the same
resource as each other. By placing rows/objects/entries that
are likely to be used in the same transaction on a single
resource, it is possible to avoid the need for blanket imple-
mentation of a 2PC protocol. This is because, when the
entries being modified by a given transaction are only in the
single resource and not in any others, there is no need to wait
for the other resource to vote before committing in the single
resource. As a result, truly independent transactions operat-
ing on independent entries can use different resources con-
currently.

In other words, the system is configured to make use of
the concept of a “co-location identifier”. The data model is
marked up in order to identify the field in the data model that
is to be used as the co-location identifier, and the dispatch
function then hash-spreads across resources or storage areas
based on the co-location identifier. In the example given
above, the co-location identifier would be the owner of the
items, not the Primary Key. This means that, in the given
example, all possessions of a specific person would be
dispatched to the same resource and, since most humans are
independent of each other, parallelism may be gained by
spreading over multiple resources.

Accordingly, the dispatch function in this case is a hash-
spread algorithm based on the co-location identifier. Given

10

15

20

25

30

35

40

45

50

55

60

65

10

that the particular method of co-location depends on the
application’s data model, it is necessary either to use a
specific function provided by the application, or it is nec-
essary to mark up the data model to identify a suitable
co-location identifier.

It is therefore possible to define a mechanism were steps
can be interleaved between transactions and both the appli-
cation and the resources will achieve the correct states. This
provides significantly greater scalability than in known
systems.

An important aspect of the disclosed method and system
is the Safe Timestamp Manager that allocates new time-
stamps for committing transactions. The Safe Timestamp
Manager is used for every transaction that begins to commit
in the system, not just in cases where there is more than one
resource in the transaction. New transactions requested by
the application are given the latest “Safe Timestamp” when
they first access a resource or the database in general. The
“Safe Timestamp” provides the visibility for a Transaction.
Given that timestamps are a monotonically increasing
sequence, the “Safe Timestamp” is defined as the highest
timestamp where all transactions with timestamps less than
or equal to the Safe Timestamp have been completed. Each
transaction is assigned a unique timestamp by the Safe
Timestamp Manager as it begins commit processing. As
transactions are completed, the Safe Timestamp will
increase to reflect this. The Safe Timestamp Manager is also
configured to store the state in commit processing (the
transaction commit state) for each committing transaction,
and to store the Safe Timestamp for transactions that have
committed. In addition, the Safe Timestamp Manager stores
the highest allocated commit timestamp, and each commit-
ting transaction is assigned its own unique timestamp.

The storage areas in the resource are used to store the
entries and their generations. The storage areas can them-
selves prepare and commit transactions, and therefore act as
RMs in the 2PC approach. The entries are spread across the
storage areas in such a way that any given entry and all its
generations are stored in one and only one storage area
(although it will be appreciated that one storage area may
contain more than one entry and its generations).

The Safe Timestamp Manager creates and stores a trans-
action record for each transaction. The transaction record
may be formatted to have five attributes:

1) a transaction identifier for the transaction

ii) the unique timestamp allocated to the committing
transaction

iii) a list of storage areas used by the transaction

iv) the number of storage areas that have been committed

v) the status of the committing of the transaction (i.e.
Commit State in the transaction record format)

The Commit State may be one of:

a) Unallocated—slot is not used

b) Pending—the transaction has started to commit, but
some RMs have not completed committing

¢) Finished—all changes to entries in the storage areas
resulting from the transaction have been committed, and the
transaction is complete

This allows a new commit protocol to be implemented.
When a transaction requested by the application first
accesses the resource, the Safe Timestamp Manager hands
out the current safe timestamp. This is a read-only operation,
and concurrent transactions do not need to lock against each
other in order to obtain the current value of the safe
timestamp.

As each storage area communicates with a single RM,
each RM is informed to commit by the Transaction Manager

US 9,424,070 B2

11

(TM). As part of a commit operation, a storage area bundles
together its own commit message, and in the case of a
distributed system, the commit message is transmitted via a
network protocol to all replicas for the Storage Area, the
protocol being defined by the Storage Area. Each storage
area has its own independent Total Order, and therefore
commit messages for different storage areas are received and
processed in different Total Orders. Accordingly, the commit
messages for different storage areas can be processed inde-
pendently and concurrently. In the case of a local system,
each storage area/RM uses a local object as the commit
message, and this local object does not need to be sent or
received—it can be processed locally.

The commit message may contain a transaction identifier,
the storage area represented by the RM and the total number
of storage areas used in the transaction.

If a transaction has updated multiple storage areas, then
there are multiple commit messages generated for that
transaction. These commit messages may be sent in parallel
and also processed in parallel.

When a commit message is received and processed, the
following steps take place. It will be noted that the steps may
occur in parallel for concurrent commit messages, and
therefore for concurrent transactions:

1) Request a timestamp for the transaction from the Safe
Timestamp Manager, the transaction being identified by its
transaction identifier. The Safe Timestamp Manager checks
its transaction records, and if a timestamp has already been
allocated to the transaction, this timestamp is returned. If a
timestamp has not yet been allocated, the Safe Timestamp
Manager will allocate a new timestamp to the transaction
identifier and return the new timestamp. In order to allocate
a new timestamp, the Safe Timestamp Manager reads,
increments and updates the “highest allocated timestamp”.
The Safe Timestamp Manager then allocates a new record,
sets its state to Pending, and records the number of storage
areas/RMs that have been modified by the transaction. The
number of committed storage areas/RMs in the transaction
record is then set to zero.

2) Commit the changes to the identified storage area.
Changes are applied from the transaction to the storage area,
and the changes are marked with the allocated timestamp.

3) Atomically increment in the transaction record the
number of storage areas that have committed.

4) If the number of storage areas updated is equal to the
number of storage areas committed, then the transaction
record state is marked as Finished, and the Safe Timestamp
Manager atomically calculates the new safe timestamp.
Future transactions will use the new safe timestamp for their
isolation.

Steps 1), 2), 3) and 4) of this commit protocol may be
interleaved between different transactions. Moreover, each
of steps 1), 2), 3) and 4) may execute in parallel if there are
concurrent committing transactions. If enough storage areas
are configured, and entries are spread sufficiently well across
the storage areas, then contention on any given storage area
is low. The number of storage areas is tuneable, and can
therefore be appropriately sized for different hardware con-
figurations. Although each of steps 1), 2), 3) and 4) may
contain critical regions, these are typically relatively small,
so the protocol as a whole can be implemented in a highly
scalable manner.

To summarize, a dispatch function is important when a
resource does not have sufficient scalability. The dispatch
function is required in order to direct transactions to the
appropriate resources. When using multiple resources for
scalability, it is possible to dispatch independent queries or

10

15

20

25

30

35

40

45

50

55

60

65

12

transactions to different resources, in which case additional
parallelism is possible. This only works, however, for truly
independent transactions directed to separate resources,
since the transactions will not affect each other or conflict
when running simultaneously. Using 2PC (with a Transac-
tion Manager) across the different resources helps to ensure
that the commit/rollback of the multiple resources works in
a sensible way.

However, when a query or transaction needs to be effected
across multiple resources, there arises a serious problem of
visibility, since the resources do not cooperate to provide the
correct visibility. Accordingly, a novel Safe Timestamp
Manager is provided in order to give the correct visibility
when multiple resources are used in a single transaction (the
visibility being as good as the visibility of a single resource).
In this way, embodiments of the present invention provide
the advantages of scalability together with the correct vis-
ibility, which has not hitherto been achieved.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are further described here-
inafter with reference to the accompanying drawings, in
which:

FIG. 1 shows a known database system;

FIG. 2 shows an alternative view of a known database
system,

FIG. 3 shows a simple known database with three entries
A, B and C;

FIG. 4 shows a transaction on the database of FIG. 3;

FIG. 5 shows a simple system with two nodes (Server 1
and Server 2), each in the same state;

FIG. 6 shows an embodiment of the present invention;

FIG. 7 shows an alternative view of an architecture of an
embodiment of the present invention;

FIG. 8 shows an alternative embodiment to that shown in
FIG. 7,

FIG. 9 shows a further development of the embodiment of
FIG. 8;

FIG. 10 illustrates a first aspect of the operation of an
embodiment of the invention;

FIG. 11 illustrates a Safe Timestamp Manager in an
embodiment of the invention;

FIG. 12 further illustrates the Safe Timestamp Manager of
FIG. 11; and

FIG. 13 shows an example of a Safe Timestamp Manager
with four transaction records.

DETAILED DESCRIPTION

FIG. 6 shows a first embodiment of the present invention
in simplified form, comprising a database system in which
transactions or changes to entries in the database resulting
from operations of the Application are controlled by a
Transaction Manager (TM) or Transaction Co-ordinator and
multiple Resource Managers (RMs). The TM co-ordinates
multiple RMs into a single “global” transaction. The Appli-
cation communicates with each Resource and also with the
TM. This may be by way of APIs and/or a protocol. The
Application may be considered as a program that uses and
manipulates the entries in the database, with the database
internally distributing the entries across multiple Resources.
In contrast to the database system of FIG. 1, there is
additionally provided a dispatch function (indicated here as
Resource-Dispatch) between the Application and the
Resources. The dispatch function directs transactions from
the Application to the appropriate Resource(s) on the basis

US 9,424,070 B2

13

of the content of the tables in the Resource, in such a way
that any given transaction is routed only to the Resources
containing entries upon which the transaction operates,
allowing another transaction operating on different entries to
be routed concurrently in parallel to other Resources.

An alternative view of an embodiment of the present
invention is shown in FIG. 7. Here there is shown a resource
(for example, a database) that includes multiple storage
areas. A resource in this context is a system or component
that participates in a transaction processing system. The
resource in FIG. 7 may, at its simplest, be considered as a
storage area that is managed by an RM. The RM is simply
an interface exposed by a transacted resource to the TM. The
RM allows the TM to coordinate transaction boundaries
across multiple resources. Multiple RMs may be present in
a single resource. The RM may perform operations such as
prepare(), commit() and rollback(). These operations are
invoked by the TM. A dispatch function between the client
API and the storage areas and intelligently distributes
requests emanating from the application by way of the client
API to the appropriate storage areas. The TM invokes the
RMs, and is only concerned with managing the prepare/
commit/rollback lifecycles for the various RMs used in its
transactions. The Application can access the resource by
way of a Client API or protocol that interfaces between the
Application and the resource, and which allows the Appli-
cation to ask the resource to do something. Operations are
resource-specific, but typically include operations such as
findByPrimaryKey(Key), update(key,value), remove(key),
create(key,value) and so forth.

The embodiment of FIG. 7 additionally includes a Safe
Timestamp Manager, here shown as part of the resource that
uses many storage areas (only two are shown for clarity).
The Safe Timestamp Manager interfaces with the storage
areas and ensures that application transactions will not see
partially committed transaction results. The Safe Timestamp
Manager allocates timestamps to transactions, and is also
used by the client APl/protocol implementation.

FIG. 8 shows an alternative embodiment to that shown in
FIG. 7. The difference here is that the Safe Timestamp
Manager is external to the resource, and can therefore be
shared across different resources (for example containing
different types of data), as shown for example in FIG. 9.

FIG. 10 shows three Resources (Resource A, Resource B
and Resource C) with their storage areas and a component
for implementing a dispatch function (RM-Dispatch). Every
Resource holds the same tables or key space. In other words,
creating a table at the dispatch function level will create a
table in each Resource. The dispatch function steers opera-
tions across the different Resources, for example when a
database row/object/entry is created, updated or removed.
Any operation on a particular row/object/entry is given to
the same Resource; in other words, one entry resides in one
Resource. Therefore, a transaction using, say, entries A and
B may use a different Resource than a transaction using
entry C. This may be achieved by using a function to spread
entries across the Resources. A simple function of this type,
for example, would find the RM to use for any given
transaction by taking the hash-code of the entry’s Primary
Key (or some other unique identifier including any index
value that can be used to retrieve the entry in question)
modulo the number of Resources (N). This means that it is
possible to run transaction commits in parallel, as each
Resource has its own commit mechanism.

10

15

20

25

30

35

40

45

50

55

60

65

14

As shown in FIG. 10, each of Resource A, Resource B and
Resource C holds the same tables T1, T2 and T3. Resource
A has entry Ea in T1 and entry E2 in T2. Resource B has
entries Eb and Ec in T1, and entry E1 in T2. Resource C has
entry Ed in T1 and entry E3 in T2. All the Resources have
an empty table T3.

It is well-known that 2PC transactions are more resource
intensive than single-phase commit transactions. The 2PC
protocol requires extra communications between the TM
and the RMs, which takes up additional computer cycles.

If each entry is always hashed into a Resource solely on
the basis of its identifier’s hash-code, then the entries are not
distributed in an optimum way, and it may become necessary
to use 2PC for any transaction that uses more than one entry.
This would harm the overall performance of the system.

Accordingly, related rows/objects/entries are advanta-
geously grouped in to the same Resource as each other. By
placing rows/objects/entries that are likely to be used in the
same transaction into a single Resource, it is possible to
avoid the need for blanket implementation of a 2PC proto-
col. This is because, when the entries being modified by a
given transaction are only in the single Resource and not in
any others, there is no need to wait for the other Resources
to vote before committing in the single Resource. As a result,
truly independent transactions operating on independent
entries can use different Resources concurrently.

With reference to FIG. 10, the three Resources (Resource
A, Resource B and Resource C) each contain various entries.
The entries are inserted into a particular Resource based on
their own identifiers (e.g. primary/secondary keys), and also
based on application-specific information made available to
the dispatch function at runtime. This can be encoded into
the entry identifiers, or provided as Meta Data for the
individual entries. As a result, the dispatch function can
select which Resource to select for any given entry based on
entry identifiers. Entries in the same Resource can be
considered to be more likely to be used in a single transac-
tion than entries in different Resources, and this reduces the
overhead of 2PC, allowing truly independent transactions to
use different Resources.

The operation of the Safe Timestamp Manager together
with storage areas 1, 2, . . . N is shown in more detail in FIG.
11. The Safe Timestamp Manager allocates new timestamps
for committing transactions. New client transactions are
given the latest “safe timestamp” when they first access a
Resource. The Safe Timestamp Manager also stores the state
in commit processing for each committing transaction, and
stores the safe timestamp for transactions that have com-
mitted. It also stores the highest allocated commit time-
stamp, and each committing transaction is allocated its own
unique timestamp. Storage area 1, 2, . . . N store entries and
their generations. The storage areas can themselves prepare
and commit, so act as RMs in the 2PC approach. Entries are
spread intelligently across the storage areas so that one given
entry and all its generations are stored in one and only one
storage area.

Moreover, a new commit protocol is used, as illustrated in
FIG. 12. The Safe Timestamp Manager stores a transaction
record for each transaction. The transaction record may be
formatted to have five attributes:

1) a transaction identifier for the transaction

ii) the unique timestamp allocated to the committing
transaction

iii) a list of storage areas used by the transaction

US 9,424,070 B2

15

iv) the number of storage areas that have been committed

v) the status of the committing of the transaction (i.e.
Commit State in the transaction record format)

The Commit State may be one of:

a) Unallocated—slot is not used

b) Pending—the transaction has started to commit, but
some RMs have not completed committing

¢) Finished—all changes to entries in the storage areas
resulting from the transaction have been committed, and the
transaction is complete

For example, a typical transaction record may be:

1) TransactionID=T5

i) Timestamp=5

iii) Storage areas=1, 2

iv) Number committed=2

v) Commit state=FINISHED.

FIG. 13 shows a specific example illustrating how a Safe
Timestamp may be defined. The Safe Timestamp Manager
in this example stores four transaction records:

1) TransactionID=Tx

Timestamp=1

Storage areas=1, 2

Number committed=2

Commit state=FINISHED

2) Transaction]D=Ty

Timestamp=2

Storage areas=2

Number committed=1

Commit state=FINISHED

3) Transaction]D=Tz

Timestamp=3

Storage areas=1, 2

Number committed=1

Commit state=PENDING

4) Transaction]D=Ta

Timestamp=4

Storage areas=1, 2

Number committed=2

Commit state=FINISHED
Given that timestamps are a monotonically increasing
sequence, the safe timestamp is defined as the highest
timestamp where all transactions with timestamps less than
or equal to its value have FINISHED. Each transaction is
assigned a unique timestamp as it begins commit processing.

In the present example, transactions 1), 2) and 4) with
respective timestamps 1, 2 and 4 are FINISHED, and
transaction 3) with timestamp 3 is PENDING. The transac-
tion with timestamp 3 is PENDING because there are two
storage areas accessed by this transaction, but only one of
two has committed. Therefore the safe timestamp that is
handed out to new client transactions is 2 (the highest
timestamp where all transactions with timestamps less than
or equal to its value have FINISHED). This means that new
client transactions are given a visibility of Timestamp=2,
and do not observe any changes made by transactions 3) and
4). When transaction 3) with timestamp 3 is FINISHED, the
safe timestamp will become 4.

Throughout the description and claims of this specifica-
tion, the words “comprise” and “contain” and variations of
them mean “including but not limited to”, and they are not
intended to (and do not) exclude other moieties, additives,
components, integers or steps. Throughout the description
and claims of this specification, the singular encompasses
the plural unless the context otherwise requires. In particu-
lar, where the indefinite article is used, the specification is to
be understood as contemplating plurality as well as singu-
larity, unless the context requires otherwise.

10

15

20

25

30

35

40

45

50

55

60

65

16

Features, integers, characteristics, compounds, chemical
moieties or groups described in conjunction with a particular
aspect, embodiment or example of the invention are to be
understood to be applicable to any other aspect, embodiment
or example described herein unless incompatible therewith.
All of the features disclosed in this specification (including
any accompanying claims, abstract and drawings), and/or all
of the steps of any method or process so disclosed, may be
combined in any combination, except combinations where at
least some of such features and/or steps are mutually exclu-
sive. The invention is not restricted to the details of any
foregoing embodiments. The invention extends to any novel
one, or any novel combination, of the features disclosed in
this specification (including any accompanying claims,
abstract and drawings), or to any novel one, or any novel
combination, of the steps of any method or process so
disclosed.

The reader’s attention is directed to all papers and docu-
ments which are filed concurrently with or previous to this
specification in connection with this application and which
are open to public inspection with this specification, and the
contents of all such papers and documents are incorporated
herein by reference.

The invention claimed is:
1. A method of processing transactions requested by an
application in a distributed computer system comprising:

at least one resource comprising a plurality of storage
areas, or a plurality of resources each comprising at
least one storage area, in each case wherein the storage
areas hold tables including a content, wherein the
storage areas hold the same tables as each other, and
wherein each storage area has an associated resource
manager;

a transaction manager that is linked, by way of a network
or a local application programming interface (API), to
each of the resource managers, the transaction manager
being configured to coordinate transaction prepare and
commit cycles;

wherein the application requests operations on the
resources by way of an interface;

wherein a dispatch function directs the transactions from
the application to the appropriate storage area or stor-
age areas on the basis of the content of the tables in the
storage areas, in such a way that any given transaction
is routed only to the storage areas containing entries
upon which the transaction operates, allowing another
transaction operating on different entries to be routed
concurrently in parallel to other storage areas;

wherein a safe timestamp manager is provided to allocate
new timestamps for committing the transactions in a
single order;

wherein new transactions requested by the application are
assigned a most current safe timestamp when they first
access a resource, wherein the safe timestamp is
defined as a highest timestamp where all the transac-
tions with timestamps less than or equal to the safe
timestamp have been completed; and

wherein the safe timestamp manager hands out the current
safe timestamp when the transaction requested by the
application first accesses the resource, and wherein
handing out the current safe timestamp is a read-only
operation such that concurrent transactions do not need
to lock against each other in order to obtain the current
value of the safe timestamp.

US 9,424,070 B2

17

2. The method according to claim 1, wherein the interface
by which the application requests operations on the resource
takes the form of a client APL, and/or a query language,
and/or a protocol.

3. The method according to claim 1, wherein each of the
transactions is assigned a unique timestamp by the safe
timestamp manager as it begins processing.

4. The method according to claim 3, wherein the safe
timestamp is increased as the transactions are completed.

5. The method according to claim 1, wherein the safe
timestamp manager stores the state in commit processing
(the transaction commit state) for each committing transac-
tion, and stores the safe timestamp for the transactions that
have committed.

6. The method according to claim 5, wherein the safe
timestamp manager stores the highest allocated commit
timestamp, and each committing transaction is assigned its
own unique timestamp.

7. The method according to claim 1, wherein the storage
areas in the resource are used to store table entries and their
generations, and wherein the entries are spread across the
storage areas in such a way that any given entry and all its
generations are stored in one and only one storage area.

8. The method according to claim 1, wherein the dispatch
function is part of the resource.

9. The method according to claim 1, wherein the dispatch
function is part of the application.

10. The method according to claim 1, wherein the dis-
patch function resides between the resource and the appli-
cation.

11. The method according to claim 1, wherein the dispatch
function implements an application programming interface
(API) or protocol that is used by the application.

12. The method according to claim 11, wherein the
dispatch function and the individual resource managers use
the same API or protocol.

13. The method according to claim 1, wherein the dis-
patch function finds the resource manager to use for any
given transaction by taking a hash-code of an entry’s Pri-
mary Key or other unique identifier modulo a number of
resource managers.

14. The method according claim 1, wherein an entry is
inserted into a particular resource based on its own identifier,
and also based on application-specific information made
available to the dispatch function at runtime.

15. The method according to claim 14, wherein the
application-specific information is encoded into an entry
identifier.

16. The method according to claim 14, wherein the
application-specific information is provided as meta data for
the entry.

17. The method according to claim 1, wherein the safe
timestamp manager creates and stores a transaction record
for each transaction.

18. The method according to claim 17, wherein the
transaction record is formatted to have five attributes:

1) a transaction identifier for the transaction

ii) the unique timestamp allocated to the committing

transaction

iii) a list of storage areas used by the transaction

iv) the number of storage areas that have been committed

v) the commit status of the transaction.

19. The method according to claim 1, wherein each
storage area acts as a single resource manager and each
storage area/resource manager is informed to commit by the
transaction manager.

15

40

45

55

60

65

18

20. The method according to claim 19, wherein, as part of
a commit operation, a storage area/resource manager puts
together its own commit message, and wherein the commit
message is transmitted via a network protocol to any other
resource manager that is involved in the transaction, the
protocol being defined by the resource manager.

21. The method according to claim 20, wherein each
storage area has its own independent Total Order, such that
commit messages for different storage areas are received and
processed in different Total Orders.

22. The method according to claim 20, wherein the
commit message contains a transaction identifier, the storage
area represented by the resource manager and the total
number of storage arecas used in the transaction.

23. The method according to claim 20, wherein multiple
commit messages are generated for a transaction if the
transaction has updated multiple storage areas/resource
managers.

24. The method according to claim 23, wherein the
multiple commit messages are sent in parallel and/or pro-
cessed in parallel.

25. A distributed computer system comprising:

at least one resource comprising a plurality of storage
areas, or a plurality of resources each comprising at
least one storage area, each case wherein the storage
areas hold tables including a content, wherein the
storage areas hold the same tables as each other, and
wherein each storage area has an associated resource
manager;

a transaction manager that is linked, by way of a network
or a local application programming interface (API), to
each of the resource managers, the transaction manager
being configured to coordinate transaction prepare and
commit cycles;

an interface to allow an application to request operations
on the resources;

a dispatch function to direct transactions from the appli-
cation to the appropriate storage area or storage areas
on the basis of the content of the tables in the storage
areas, in such a way that any given transaction is routed
only to the storage areas containing entries upon which
the transaction operates, allowing another transaction
operating on different entries to be routed concurrently
in parallel to other storage areas;

a safe timestamp manager is to allocate new timestamps
for committing the transactions in a single order;

wherein the safe timestamp manager is configured to
assign a most current safe timestamp to new transac-
tions requested by the application when they first
access a resource, wherein the safe timestamp is
defined as a highest timestamp where all the transac-
tions with timestamps less than or equal to the safe
timestamp have been completed; and
wherein the safe timestamp manager is configured to

hand out the current safe timestamp when the trans-
action requested by the application first accesses the
resource, and wherein handing out the current safe
timestamp is a read-only operation such that concur-
rent transactions do not need to lock against each
other in order to obtain the current value of the safe
timestamp.

26. The system according to claim 25, wherein the inter-
face by which the application requests operations on the
resource takes the form of a client API, and/or a query
language, and/or a protocol.

US 9,424,070 B2

19

27. The system according to claim 25, wherein the safe
timestamp manager is configured to assign a unique time-
stamp to each of the transactions as it begins processing.

28. The system according to claim 27, wherein the safe
timestamp is increased as the transactions are completed.

29. The system according to claim 25, wherein the safe
timestamp manager is configured to store the state in commit
processing for each committing transaction, and to store the
safe timestamp for the transactions that have committed.

30. The system according to claim 29, wherein the safe
timestamp manager is configured to store the highest allo-
cated commit timestamp, and each committing transaction is
assigned its own unique timestamp.

31. The system according to claim 25, wherein the storage
areas in the resource are configured to store table entries and
their generations, and wherein the entries are spread across
the storage areas in such a way that any given entry and all
its generations are stored in one and only one storage area.

32. The system according to claim 25, wherein the dis-
patch function is part of the resource.

33. The system according to claim 25, wherein the dis-
patch function is part of the application.

34. The system according to claim 25, wherein the dis-
patch function resides between the resource and the appli-
cation.

35. The system according to claim 25, wherein the dis-
patch function is configured to implement an application
programming interface (API) or protocol that is used by the
application.

36. The system according to claim 35, wherein the dis-
patch function and the individual resource managers are
configured to use the same API or protocol.

37. The system according to claim 25, wherein the dis-
patch function is configured to find the resource manager to
use for any given transaction by taking a hash-code of an
entry’s Primary Key or other unique identifier modulo a
number of resource managers.

38. The system according to claim 25, configured such
that an entry is inserted into a particular resource manager
based on its own identifier, and also based on application-
specific information made available to the dispatch function
at runtime.

10

15

20

25

30

35

40

20

39. The system according to claim 38, configured such
that the application-specific information is encoded into an
entry identifier.

40. The system according to claim 38, configured such
that the application-specific information is provided as meta
data for the entry.

41. The system according to claim 25, wherein the safe
timestamp manager is configured to create and store a
transaction record for each transaction.

42. The system according to claim 41, wherein the trans-
action record is formatted to have five attributes:

1) a transaction identifier for the transaction

ii) the unique timestamp allocated to the committing

transaction

iii) a list of storage areas used by the transaction

iv) the number of storage areas that have been committed

v) the commit status of the transaction.

43. The system according to claim 25, wherein each
storage area is configured to act as a single resource manager
and each storage area/resource manager is informed to
commit by the transaction manager.

44. The system according to claim 43, wherein a storage
area/resource manager is configured to put together its own
commit message as part of a commit operation, and wherein
the commit message is transmitted via a network protocol to
any other resource manager that is involved in the transac-
tion, the protocol being defined by the resource manager.

45. The system according to claim 44, wherein each
storage area has its own independent total order, such that
commit messages for different storage areas are received and
processed in different total orders.

46. The system according to claim 44, wherein the com-
mit message contains a transaction identifier, the storage
area represented by the resource manager and the total
number of storage arecas used in the transaction.

47. The system according to claim 44, configured such
that multiple commit messages are generated for a transac-
tion if the transaction has updated multiple storage areas/
resource managers.

48. The system according to claim 47, configured such
that the multiple commit messages are sent in parallel and/or
processed in parallel.

#* #* #* #* #*

